

Repac Aluminium-Profile werden aus der Legierung EN AW-6060 hergestellt. Die Herstellungsweise ist das Strangpressen, bei dem ein erhitzter Aluminiumbolzen (450-500°C) unter hohem Druck (1600-6500 Tonnen, je nach Pressengröße) durch ein Profilwerkzeug gepresst wird, dessen Öffnung dem Querschnitt des Profils entspricht.

Legierung EN AW-6060:

Streckgrenze Rp 0,2, N/mm ²	
Zustand T4	70
Zustand T6	190
Zugfestigkeit Rm, N/mm ²	
Zustand T4	150
Zustand T6	215
Bruchdehnung, A5%	
Zustand T4	23
Zustand T6	10
Brinellhärte HB	
Zustand T4	43
Zustand T6	67
Dichte (kg/m³)	2700
Elastizitätsmodul (Mpa)	70.000
Ausdehnungskoeffizient	
20-100°C (°C-1)	23E-05
Thermische Leitfähigkeit	
20°C (W/mK)	200
Elektrische Leitfähigkeit	
% IACS	52
Schmelzpunkt (°C)	600-655

Um die Widerstandskraft der Oberflächen gegen Korrosion und mechanischen Verschleiß noch weiter zu erhöhen, ihr ein dekoratives Aussehen zu verleihen oder auf andere Weise die Eigenschaften der Oberfläche zu verändern, werden Repac Aluminium-Profile eloxiert. Die Eloxierung (Anodisierung) ist ein elektrochemischer Prozess zum künstlichen Verdicken der Oxidschicht auf der Oberfläche des Aluminiums. Bei diesem Verfahren wird das Profil in ein elektrolytisches Bad gesenkt, an Gleichstrom angeschlossen und als Anode geschaltet. Während die Dicke des ursprünglichen natürlichen Oxidfilms 0,02 µm beträgt, misst die Schicht nach dem Verfahren zwischen 13 und 15 µm und wird während dieses Prozesses in die gewünschten Farbtöne, Silber, Sand, Gold, Bronze oder Edelstahl-Optik eingefärbt. Die Anodisierung geschieht in einem geschlossenem System mit minimaler Emission und gilt daher als umweltfreundliche Art der Oberflächenveredelung.